Differential effects of electrical stimulation of the central amygdala and lateral hypothalamus on fos-immunoreactive neurons in the gustatory brainstem and taste reactivity behaviors in conscious rats.

نویسندگان

  • Christopher A Riley
  • Michael S King
چکیده

Projections from the central amygdala (CeA) and lateral hypothalamus (LH) modulate the activity of gustatory brainstem neurons, however, the role of these projections in gustatory behaviors is unclear. The goal of the current study was to determine the effects of electrical stimulation of the CeA or LH on unconditioned taste reactivity (TR) behaviors in response to intra-oral infusion of tastants. In conscious rats, electrical stimulation of the CeA or LH was delivered with and without simultaneous intra-oral infusion of taste solutions via an intra-oral cannula. Immunohistochemistry for the Fos protein was used to identify neurons in the gustatory brainstem activated by the electrical and/or intra-oral stimulation. In the absence of intra-oral infusion of a tastant, electrical stimulation of either the CeA or the LH increased the number of ingestive, but not aversive, TR behaviors performed. During intra-oral infusions of taste solutions, CeA stimulation tended to increase aversive behaviors whereas LH stimulation dramatically reduced the number of aversive responses to quinine hydrochloride (QHCl). These data indicate that projections from the CeA and LH alter TR behaviors. A few of the behavioral effects were accompanied by changes in the number of Fos-immunoreactive neurons in the gustatory brainstem, suggesting a possible anatomical substrate for these effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number and location of Fos-like immunoreactive neurons in the central gustatory system following electrical stimulation of the parabrachial nucleus in conscious rats.

Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al. 2004). To identify neurons possibly involved in these behavioral responses, we used Fos immunohistochemistry to locate populations of neurons within central gustatory and oromotor centers activated by PBN stimulation. Dramatic increases in the ...

متن کامل

Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons.

Evidence suggests that centrifugal modulation of brain stem gustatory cells might play a role in the elaboration of complex taste-guided behaviors like conditioned taste aversion and sodium appetite. We previously showed that activity in one forebrain area, the central nucleus of the amygdala (CeA), increased the chemical selectivity of taste cells in the parabrachial nucleus (PBN). The present...

متن کامل

Descending influences from the lateral hypothalamus and amygdala converge onto medullary taste neurons.

The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on many aspects of ingestive behavior. These nuclei receive projections from several areas carrying gustatory and viscerosensory information, and send axons to these nuclei as well, including the nucleus of the solitary tract (NST). Gustatory responses of NST neurons are modulated by stimulation of th...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical senses

دوره 38 8  شماره 

صفحات  -

تاریخ انتشار 2013